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The problem of determining a pressure gradient distribution that will produce a 
specified shear force on a body surface in boundary-layer flows is considered. This 
leads to an “overdetermined” boundary value problem for a partial differential equation 
containing an unknown coefficient. A numerical procedure for determining the coefficient 
is given along with several worked out examples including both similar and nonsimilar 
flows. The method essentially treats the unknown coefficient as an eigenvalue which is 
computed using Newton’s method. This in turn employes a very accurate and efficient 
tinite difference scheme for computing standard boundary-layer flows. Richardson 
extrapolation is applicable but only modest improvement was obtained in the present 
examples (for reasons that are explained). 

1. INTR~OUCTION 

In typical boundary-layer flow problems a pressure distribution over some body 
surface is prescribed and then, by solving the boundary-layer equations, the shear 
forces on the body can be obtained. However, for various purposes, including 
the design of optimal body shapes, it is desired to prescribe the shear forces on 
the body and to determine the pressure distribution which will yield them. 
Mathematically, this leads to a form of inverse problem in which a coefficient 
(scalar or function) in an (ordinary or partial) differential equation is to be 
determined so that the solution satisfies an overdetermined set of boundary 
conditions. We shall consider the numerical solution of such problems for both 
similar and non-similar two dimensional laminar flows. In the former case our 
technique can also be used to obtain the reverse-flow solutions of the Falkner-Skan 
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equation. There is no difficulty in adopting our methods to turbulent flows (using 
an eddy viscosity formulation) but we do not include such calculations here. The 
extension to three dimensional boundary-layer flows will be reported elsewhere. 

In brief, our procedure is to treat the unknown pressure distribution as an 
“eigenvalue” which is approximated by a Newton iteration scheme based on 
satisfying the excess boundary condition. It turns out that for each iteration a 
standard boundary-layer flow problem must be solved. Thus a key element in 
the present work is a very accurate and efficient difference scheme [l-3] for com- 
puting similar and nonsimilar boundary-layer flows (in which the pressure distri- 
bution is given). This nonlinear eigenvalue approach has previously been used [4] 
to get reverse-flow solutions of the Falkner-Skan equation by means of shooting 
techniques. Even for that problem, however, the present finite difference method 
seems superior. 

2. THE INVERSE PROBLEM AND NEWTON’S METHOD 

For incompressible laminar flows over a plane surface the boundary-layer 
equations can be reduced to the dimensionless form [2]: 

3 +rf$ + P(5) [l - (Z)“] = 26 [Z & - 5 $1. (1) 
Heref(5, 7) is proportional to a stream function, [ 3 0 is a transformed stream- 
wise variable, 77 3 0 measures distance in the boundary layer and /3(5‘> is the 
pressure-gradient parameter. Specifically p(.$) = (2,$/u,) du,/d[, where U,(X) is the 
external velocity field which is usually assumed to be known. The most general 
boundary conditions are of the form 

(4 

(b) 

Here f&f) z$ 0 allows us to simulate mass transfer at the wall, u,(4) + 0 allows 
us to simulate a moving wall and vm = q,(t) is the outer edge of the boundary 
layer where the external velocity field is attained. The problem (I), (2) with /3(E) 
specified is the typical nonsimilar plane laminar boundary-layer problem; for 
brevity we shall call it the standard problem. It is easy to formulate this problem 
so that T&) is also to be determined. For simplicity we shall not include these 
modifications here and in fact we shall take r)~t) = const throughout the present 
work. 
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The inverse problem results from requiring that the wall shear be specified, 
that is, 

@Y~~2>(~, 0) = S(f), t 2 0. (3) 

The problem (l)-(3) is in general overdetermined and thus we cannot specify 
p(e) arbitrarily. Rather we must determine p(t) as well as f(.$, 7) to solve this 
problem. We shall do this by considering p(4) to be an “eigenvalue” and determine 
it so that (3) is satisfied. 

More precisely, let the solution of the standard problem, (l), (2) with /3([) 
specified, be denoted by 

f& 7) = w, % BCS>> (4) 

[Technically IF is a nonlinear operator mapping an appropriate class of pressure 
gradients, /3(t), into solutions, f(.$, r), of (l), (2). However, we proceed formally 
to derive our solution procedure and numerical methods. The nonlinear functional 
analysis required to make our considerations rigorous has not, to our knowledge, 
been carried out. It is unlikely that such an analysis would aid in devising better 
numerical schemes. But of course it would be of great interest for other reasons.] 
Using the solution, or rather solution operator (4), we form 

and seek p(f) such that &9(t)) = 0 on 5 > 0. Clearly if /3 = j?*(t) is a “root” of 
this nonlinear operator equation then f*(E, 7) = IF(f, 7; /3*(e)) is a solution of 
(l)-(3). 

To solve &3([)) = 0 we employ Newton’s method. Thus with some estimate 
/3(O)(~) of the desired pressure gradient we define the sequence (/P”)(4)} by setting 

p+l)([) = fP’(‘f) + P(.f), (6) 

using this in c&P’+~)([)) = 0 and retaining at most linear terms in 8(“)([). Recalling 
(5) this linearization procedure yields 

[This is now a linear operator equation for the determination of 8(y)(@. Indeed 
technically a/@ used in the above Taylor expansion represents Frechet ditl’erentia- 
tion of the operator @IF/a+. But again we avoid any attempt at rigor and proceed 
formally.] Upon solving (7) for iP(Q we form /3(y+1)(l) as in (6) then use this in (l), 
(2) whose solution is now [F([, 7, /3(V+1)(n). 0 ne cycle of the iteration scheme is 
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thus completed. The iterates will converge, say ,P -+/3*(t), if the initial guess 
fi’“)([) is appropriately chosen. In fact, the convergence is generally expected to 
be quadratic; that is j/ G’+l)ll = 0(/l @) 11”) for v sufficiently large. 

The above procedure for solving the inverse problem for nonsimilar (two- 
dimensional) flows is easily specialized to solve similar (one-dimensional) flows. 
Indeed we simply set 5 = 0 and (1) reduces to the Falkner-Skan equation. Then 
(l)-(3) with 5 = 0 is precisely a nonlinear eigenvalue problem for the scalar 
eigenvalue /3 = /3(O) and the function of one variablef(q) = f(0, 7). The indicated 
iteration scheme (6), (7) is just Newton’s method for solving the scalar equation 
a21F(0, 0; /3(O))/a$ = S(0). The numerical method and even the computer program 
are easily specialized to solve this problem. In fact in order to solve nonsimilar 
flow problems we first solve the corresponding similar flow problem which results 
from setting 5 = 0. In this way we determine the “initial” dataf(0, 7) and ,8(O) 
which are required for the general numerical scheme for nonsimilar flows. 

3. NUMERICAL PROCEDURES; THE Box SCHEME 

On the strip {[ > 0,O 6 7 < vm} we place an arbitrary rectangular net of 
points (5,) yi) with 

(4 

(b) 

50 = 0, 5, = 4n-1 + kn > n = 1, 2,..., 

70 = 0, 7)j = Q-1 + b, 1 GjG.4 
(8) 

TJ = ‘%c. 

No additional restrictions are placed on the meshwidths hi and k, . The partial 
differential Eq. (1) is now written as a first-order system. This is crucial for the 
application of the Box Scheme [l]. We recall that the conservation equations 
from which (1) was derived were essentially first order to begin with (we need 
only consider the strain normal to the body as a basic variable). These original 
equations would be preferable if not for the fact that the scaling introduced to get 
(1) eliminates singularities which occur at the leading edge. Thus we replace (1) by 

(b) 

(4 

au/a7 = v, 

$ = BGX~" - 11 -fv + 25 [u g - v $1. 

The boundary conditions (2) become 

f& 0) =fuJGs 445 0) = &Jo> 45 rim) 1 1 4 > 0 = (10) 
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and the additional constraint (3) is simply 

G 0) = a39 4 3 0. (11) 

The difference approximations to (9) are obtained by considering one box or 
mesh rectangle, Rmj = {&+.1 < f < 5, , qjml < 7 < qj}, and making the best 
possible approximations at any points in Rnj using at most values of (f, U, v) at 
the four corners. In particular, if (fj”, Ujn, Uj”) are to approximate (f, U, V) at 
(E, , Q) the above suggests as possible difference equations: 

(a) h;l(fl - &) = uin_llZ , 

(b) h;‘(uin - z&J = z$Lllp , 
(12) 

(C) bil(Uj” - Vi”-1) = ~n-l,2[(U”),“--, - l] - (fu)~Z~/l:l,2 

+ 2[,-,/&,1[Un-1’2(Un - Unml) - Un-1’2(fn - fnm1)]j-1/2. 

Here we have introduced a notation for averages and intermediate values as 

L/2 = La - W2, Bn-I/2 = (Aa + Ll>P~ 

u;ml,2 = (2)jA + &)/2, zp2 = (Uj” + u7”-1)/2, 

(fu)j”r,‘l,” = (h”uj” + f;-‘I$-’ + fjn-&Ll + fyI..z$Z9/4, etc. 

In (12a,b) we have centered the difference approximations to (9a,b) at (4, , vi-112) 
and in (12~) the approximation to (SC) are centered at (5n-1,2 , %-i/J, the mid- 
point of R,,, . These difference equations are extremely compact, have second-order 
accuracy and allow arbitrary nonuniform nets. The forms used for the nonlinear 
terms in (12~) are not uniquely determined but only require that symmetric 
centering is maintained. Thus one could use in place of (fi)jn_;:/22 the product of 
averages (f ,n_;:lzzv,n_;:lzz), etc. We advocate a choice which minimizes the computa- 
tions. 

3.1. Solution of Standard ProbIems 

If we assume that the pn are known and that (fm-l, u;-l, z$-l) are known for 
all 0 < j < J then (12) for 1 < j < J and the boundary conditions (10) yield 
a nonlinear algebraic system of 3J + 3 equations in as many unknowns 
(fj”, Ujn, aj”). This system can be solved very effectively by using Newton’s method. 
The details are presented in [2,3] so we do not repeat them here. The important 
observation is that the linearized equations obtained by applying Newton’s 
method to (10) and (12) form a block tridiagonal system (with 3 x 3 blocks) 
and this system can be solved in a very efficient manner. To start this procedure 
solutions are obtained for n = 0, that is on 5, = 0 by using slight but obvious 

$31/10/I-II 
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modifications in (12~) to get a very efficient difference scheme for the Falkner-Skan 
equation. The initial estimate of the solution used in the iteration scheme at 
4 = [, is the previously converged solution at [ = taPI . Thus for all downstream 
stations but f = 4, we have reasonably accurate initial guesses and Newton’s 
method converges rapidly (in l-3 iterations for most applications, see [2]). At 
the intial station to = 0, we must work a bit more since such good initial estimates 
are not available. 

Above we have outlined our numerical method for computing standard non- 
similar boundary-layer flows. For a given p(f), this method can be used to accu- 
rately approximate lF(t, 7; p(t)) in (4). There are three sources for the errors in 
these approximations: (i) rounding off in finite precision arithmetic; (ii) iteration 
errors due to terminating the Newton iterates at a finite stage; (iii) truncation 
errors due to finite (nonzero) mesh steps. The magnitudes of these errors will in 
part dictate how we use the scheme to solve the inverse problems. 

3.2. Solution of Inverse Problems 

Suppose now that the inverse problem has been solved (or accurately approxi- 
mated) for LJ < [,-1. Thus we assume known (fy-‘, u;-l, v;-“) for 0 <j < J 
as well as fine1 = /3([+J. We must compute pn and (A”, uj”, vj”) for 0 < j < J 
to satisfy (lo)-(12). To do this we use the nonlinear eigenvalue approach indicated 
in section 2. Thus if for a fixed bm = p, say, and [ = [, the solution of (10) and (12) 
is denoted by (fjn(/3), ujn@), vin(p)), then (11) becomes 

van@> = f%). (13) 

This is solved by Newton’s method, iterating on /I, that is, 

B (v+l) = /j(u) - [V,~(/3’“‘) - s(~,)]/[av,~(~(~‘)/~~l. (14) 

We call this the “outer” iteration. The “inner” iteration is the previous Newton 
procedure employed to solve (lo), (12) for a fixed given value of p = B@), say. 
In principle, each outer iteration could require several inner iterations. 

To use Newton’s method as in (14) we must evaluate &J,~@)/$. This can be 
approximated in either of two ways. First by differentiating with respect to /3 = /3, 
in (10) and (12), recalling that (f;-‘, u;-‘, vy-“) are independent of /3, , yields 
a linear system of difference equations for the quantities (C’/afl)(f;~‘& z&3), vj”(/3)). 
The second way is to differentiate with respect to /3 = #?(t) in (9) to get, in terms 
of 
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the variational equations: 

(a) 
(b) 
(4 

aF/aq = u, 
aujar = v, 
avlarl = p2~u -fv- vE; 

(15) 

+ 2t [us + U”&$- v$] +(u”- 1). ag 

Boundary conditions are, from differentiation in (lo), 

(a> 
(b) 
Using the Box Scheme on the net (8) we replace (15) by difference equations 
for (Fjn(/3), U,“@), Vjn(/3)). Both of the indicated methods yield block tridiagonal 
linear systems which are easily solved by the previously mentioned factorization 
procedure. In our calculations we have used the latter method. It corresponds 
more closely to the procedure of Section 2 evaluated approximately by finite 
differences. 

In addition to the sources of error (i)-(iii) in solving the standard problem 
(see end of Section 3.1) there is, for the inverse problem, (iv) an iteration error 
due to terminating the Newton iterates used to solve (13). A well-balanced solution 
procedure should maintain these error terms of about the same magnitude. 
In fact the roundoff errors (i), are with no additional difficulty usually several 
orders of magnitude less than the other errors. The tist Newton iteration errors, 
(ii), are with only one iteration of the same order as the truncation errors provided 
that (a) we are not at the initial point &, = 0, and (b) the solution at the previous 
point had balanced errors and was used as the intial estimate. For this reason 
we need use only one inner iteration (as in Section 3.1) for each outer iteration 
(as in Section 3.2) for all 5, > 0. With this procedure the entire scheme, that is 
essentially the outer iterations, were observed to converge quadratically. At the 
initial point & , the inner iterations were repeated till convergence for the nrst 
outer iteration and afterward only one inner iteration was used for each outer 
iteration. This is also the procedure that is used for similar flows, in which our 
problem reduces to the Falkner-Skan equation, or, equivalently, to the case with 
g, = 0. 

4. RESULTS FOR SIMILAR FLOWS; FALKNER-SKAN 

For similar flows we simply use the Falkner-Skan equations obtained by 
setting g = 0 in (1). Computations were done for both positive and negative 
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wall shear. In the former case we used q,, = 6 and 4~ = 0.1. To start the calcu- 
lations for the value f”(0) = S = 0.46960 we used the initial estimate ,f3(“) = 0 
and the quantities f’“)($, u(O)($, u(O)(v) were obtained from the Pohlhausen type 
of velocity profile, with 5 = r]/q, : 

When convergence was obtained for a given value off”(O), the converged values 
were used as the initial estimate for the next, slightly different, value of f”(0). 
In Table I, we present the computed values of p for nine given values off”(O) > 0 
and compare the results with those of Smith [5]. As a consistency check, when a 
converged value for /3 was obtained the standard problem was solved using this 

TABLE I 

Positive wall-shear solutions for Falkner-Skan flows 

Number of 
outer 

iterations 

(4 

f”(O) fi (computed) 

Present 
Given Computed method Smith 

0.46960 0.46960 -0.00031 0 
0.40032 0.40032 -0.05031 -0.05 
0.31927 0.31926 -0.10017 -0.10 
0.23974 0.23971 -0.14024 -0.14 
0.19078 0.19077 -0.16016 -0.16 
0.12864 0.12880 -0.18025 -0.18 
0.08570 0.08553 -0.19023 -0.190 
0.05517 0.05490 -0.19528 -0.195 

0 -0.00483 -0.20259 -0.198834 

value of fl to compute the wall shear. The resulting computed values of f”(0) 
are also listed in the table. The number of outer iterations for convergence, which 
required that 1 p tV+l) - /3(“)I < 10-4, is indicated. Quadratic convergence was 
apparent in all cases. 

In the computations for negative wall shear (reverse flows) we take +, = 10 
and dr, = 0.1. Starting with f”(0) = S = -0.097 we use /3(O) = -0.18 and 
initial protiles obtained from 

df (“‘(d -z 

d u’“‘(rl) = - (1 2 j.&s {50(3 - 250) - (3 - 50”) 5 - (50 - 2) 5% 

5 = d% co = ?lol% 
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with &, = 4.5. Again when convergence is obtained the results are used to furnish 
the initial estimates for the next nearby value of f”(0). In Table II we present 
results for eight given values off”(O) < 0 and compare with the previous calcula- 
tions of Cebeci and Keller [4] and of Stewartson [6]. The computed f”(0) and 
number of iterations are as described for Table I. The convergence for negative 
wall shear cases was not observed to be quadratic over most of the iterations. 
This is reflected in the relatively large number of iterations required for conver- 
gence. Better initial guesses would remedy this and could have been obtained by 
taking smaller increments in f”(0). 

TABLE II 

Comparison of reverse-flow solutions for Falkner-Skan flows 

Number of 
outer 

iterations 
(4 

f”(O) p (computed) 

Present 
Given Computed method Stewartson Cebeci-Keller 

2 -0.097 -0.09701 -0.181428 -0.18 -0.180553 
6 -0.132 -0.13203 -0.154162 -0.15 -0.152118 
6 -0.141 -0.14103 -0.135446 

10 -0.132 -0.13199 -0.078662 -0.079596 
6 -0.108 -0.10799 -0.049735 -0.05 -0.049745 
5 -0.097 -0.09698 -0.040014 -0.040286 
4 -0.074 -0.07388 -0.024834 -0.025 -0.024789 
7 -0.040 -0.o4ooo -0.009060 -0.009162 

5. RESULTS FOR NONSIMILAR FLOWS 

For nonsimilar flows we consider two distributions of wall shear,f”(& 0) = S(t), 
given by 

Case A: S(t) = 0.4696(1 - [), 

Case B: S(t) = 1.232588(1 - 5). 
(17) 

At 5 = 0, Case A corresponds to a flat plate flow (that is zero pressure gradient, 
p = 0, as is seen from Table I) and Case B corresponds to a stagnation point flow 
(that is /3 = 1, see for instance Smith [5]). We have chosen shear variations that 
vanish at 5 = 1. This is a flow separation point and the validity of the boundary 
layer approximations are in doubt in the neighborhood of such points. A severe 
test of any numerical method is to see how close to separation one can compute. 



160 KELLER AND CEBECI 

In both cases we compute with & = 0.05, rim = 6 and two different uniform 
AT-meshes: /z(O) = 0.5 and /z(l) = 0.25. The convergence test for the outer itera- 
tions was / /3V+1)([n) - jP)(~,J~ < 1O-4 Quadratic convergence was observed 
everywhere except at [IQ = 0.95 for Case A and at [,, = 1.00 for Case B where 
the iterations diverged. 

TABLE III 

Computed pressure-gradient parameter ,9 as a function of 6 for Case A 

Computed f”( 6, 0) Computed (- j) 
Given 

f f”(f,O) /p’ = 0.5 /p’ = 0.25 /p’, h”’ jp’ = 0.5 fp’ = 0.25 fp’, p 

0 0.46960 
0.10 0.42264 
0.20 0.37568 
0.30 0.32872 
0.40 0.28176 
0.50 0.23480 
0.60 0.18784 
0.70 0.14088 
0.80 0.09392 
0.90 0.04696 

0.46950 
0.42270 
0.37566 
0.32866 
0.28182 
0.23480 
0.18778 
0.14095 
0.09397 

0.46955 0.46957 0.00708 0.00179 0.00003 
0.42265 0.42264 0.04976 0.04532 0.04383 
0.37571 0.37572 0.08939 0.08553 0.09068 
0.32870 0.32871 0.12562 0.12225 0.12113 
0.28170 0.28166 0.15835 0.15522 0.15018 
0.23480 0.23480 0.18709 0.18408 0.18308 
0.18784 0.18786 0.21139 0.20845 0.20747 
0.14089 0.14086 0.23051 0.22761 0.22664 
0.09396 0.09395 0.24347 0.24041 0.23940 
0.04704 0.04703 0.24790 0.24479 0.24376 

TABLE IV 

Computed pressure-gradient parameter ,9 as a function of 5 for Case B 

Computedf( f, 0) Computed (fi) 
Given 

f f”(f, 0) Ma’ = 0.5 h(l) = 0.25 F”, h’” MO’ = 0.5 jp’ = 0.25 /+O’, h”’ 

0 1.23259 1.23255 1.23259 1.23260 0.95633 0.98862 0.99938 
0.10 1.10933 1.10934 1.10935 1.10935 0.73074 0.75308 0.76053 
0.20 0.98607 0.98612 0.98608 0.98607 0.52293 0.53733 0.54213 
0.30 0.86281 0.86286 0.86283 0.86282 0.33321 0.34164 0.34445 
0.40 0.73955 0.73959 0.73957 0.73956 0.16221 0.16634 0.16772 
0.50 0.61629 0.61631 0.61630 0.61630 0.01068 0.01203 0.01248 
0.60 0.49304 0.49301 0.49306 0.49307 -0.12016 -0.12017 -0.12017 
0.70 0.36978 0.36976 0.36976 0.36976 -0.22816 -0.22837 -0.22844 
0.80 0.24652 0.24651 0.24649 0.24648 -0.30942 -0.30877 -0.30856 
0.90 0.12326 0.12323 0.12326 0.12327 -0.35514 -0.35302 -0.35232 
0.95 0.06163 0.06159 0.06173 0.06177 -0.35787 -0.45517 -0.35427 
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The results of the calculations are summarized in Tables III and IV. Again to 
check consistency the computed /3(t) were employed in the standard problem 
to compute the resulting stress, f”([, 0). All calculations were repeated on two 
v-nets and the results extrapolated, via Richardson extrapolation as described 
in [l], to obtain higher order accuracy. The “improvements” thus obtained were 
not as pronounced as were those in [2, 31. The reason for this is that only one 
inner iteration was performed for each outer iteration and thus the iteration and 
truncation errors were of the same order of magnitude. The extrapolation proce- 
dure can only reduce the truncation errors. Thus in order for it to be effective 
the iteration errors must be much less than the truncation errors. Thus we should 
perform at least two (quadratically converging) inner iterations per outer iteration 
if one Richardson extrapolation is to be done. 
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